B.sc(H) part 2 paper 3
Topic:Homomophism &Isomorphis
m
Dr hari kant singh
RRS college,mokama

Homomorphism&Isomorphism

Defination Let G be a group with respect to a binary operation o and let G' be another group with respect to a binary operation o'. Let $f: G \to G'$ be a mapping such that

$$f(a \circ b) = f(a) \circ' f(b)$$

where, $a, b \in G$ and f(a) and f(b) are their images under f. Then the mapping f is said to be an homomorphism and we say that G is homomorphic to G'.

If the mapping f is a one-one and onto mapping, then f is said to be an isomorphism and we say that G is isomorphic to G'.

Thus if f is an isomorphism, the following conditions are satisfied.

- (i) f is a homomorphism, that is $f(a \circ b) = f(a) \circ' f(b)$ i.e. f preserves group operation.
- (ii) f is a one-one and onto mapping.

Ex 1.. Let I be the additive group of integers and let E be the subgroup of even integers.

That is G = (I, +) and $G' = (E, \cdot)$.

Consider the mapping $f: I \to E$ given by

f(n) = 2n where $n \in I$.

sombres. Consider the tappin

Show that f is an isomorphism.

Soln. f preserves operations in G and G'.

Let $m, n \in L$ Then

f(m+n) = 2(m+n) = 2m + 2n= f(m) + f(n)

f is onto: Also, f is an onto mapping, since an even integer say $2n \in E$ is the image of an integer $n \in I$.

f is one one: Again, f is a one-one mapping, for

$$f(m) = f(n) \Rightarrow 2m = 2n$$

m = n

Thus we find that (i) f is a homomorphism and (ii) f is one-one and onto mapping. Hence f is an isomorphism.

Ex. 2. Let Z be the additive group of integers and let G be the multiplicative group of numbers of the form 2^{m} , where $m = 0, \pm 1, \pm 2, ...$

That is, G = (Z, +)

and $G' = [\{2^m, m = 0, \pm 1, \pm 2, ...\},]$

Let the mapping $: f: Z \to \{2^m\}$ be defined by

$$f(m)=2^m; m\in I.$$

Show that f is an isomorphism.

Soln. f preserves operation in G and G'.

Let $m, n \in I$. Then

$$f(m+n) = 2^{m+n} = 2^m \cdot 2^n$$
$$= f(m) \cdot f(n)$$

Therefore f is a homomorphism.

f is onto: Obviously f is an onto mapping, since the reimage-point of any element say $2^k \in G$ is k which $\in I$.

f is one-one: Also f is one-one, since $f(m) = f(n) \Rightarrow 2^m =$ n , i.e. m = n

Hence f is an isomorphism.

Example of a homomorphism which is not isomorphism

Ex.1. Let (Z, +) be the additive group of integers. Let mbe a fixed integer. Show that the map $f: Z \rightarrow Z$ given by f(a) = ma, $a \in Z$ is a homomorphism.

Soln. Let a, b e Z. Then

$$f(a+b) = m(a+b) = ma+mb = f(a)+f(b)$$
.
Hence f is a hornor

Hence f is a homomorphism.

But this homomorphism is one-one but not onto if $m = \pm 1$.

Ex.2 Let (R, +) be the additive group of real numbers and $K = \{e^{i\theta}, \theta \text{ is real}\}\$ be the multiplicative group of complex numbers with absolute value 1. Show that the $\operatorname{map} f: R \to K \text{ given by } f(\theta) = e^{i\theta}, \ \theta \in R \text{ is a homomorphism.}$

Soln. Let θ_1 , $\theta_2 \in R$. Then

$$f(\theta_1 + \theta_2) = e^{i(\theta_1 + \theta_2)} = e^{i\theta_1}, e^{i\theta_2} = f(\theta_1) \cdot f(\theta_2)$$
Hence f is a hornoon.

Hence f is a homomorphism.

But this homomorphism is onto but not one-one, because

$$f(\theta + 2n\pi) = e^{i(\theta + 2n\pi)} = e^{i\theta} \cdot e^{i2n\pi}$$

$$= e^{i\theta} \cdot 1 \text{ for } n = 0, 1, 2, 3...$$

In fact, if we take $\theta_1 = 2\pi$ and $\theta_2 = 4\pi$ then $\theta_1 = \theta_2$.

But
$$f(\theta_1) = e^{i2\pi} = 1$$
 and also $f(\theta_2) = e^{i4\pi} = 1$.
Thus $f(\theta_1) = f(\theta_2)$ although $\theta_1 \neq 0$.

Thus $f(\theta_1) = f(\theta_2)$ although $\theta_1 \neq \theta_2$.

Hence f is not an isomorphism.